

Informationsveranstaltung Kommunale Wärmeplanung der Stadt Königslutter am

24.09.2025, Königslutter

Agenda

18:05 Uhr Ablauf, Aufgaben und Hintergrund kommunale Wärmeplanung

18:15 Uhr Vorstellung Analyseergebnisse

18:25 Uhr Wärmenetze

18:30 Uhr Dezentrale Versorgung

18:40 Uhr Förderkulisse

18:50 Uhr Entscheidungsfindung

19:00 Uhr Ansätze für gemeinsame Versorgung

19:15 Uhr Thementische

Mobilitätswerk GmbH / Zukunfts[planungs]werk

Anwendungsorientiert

30 Mitarbeitende

Ausgründung TU Dresden

Bundesweite Projekte

Datengetrieben

Seit 2024 Marke Zukunfts[planungs]werk

Hauptthemen

Mobilitätskonzepte (Fuß-, Rad- und Elektromobilitätskonzepte)

Kommunale Wärmeplanung

Projektleitung (Senior Consulting)

Dipl.-Verk.-Wirt. René Pessier LL. M.

AnsprechpersonProjektbearbeitung

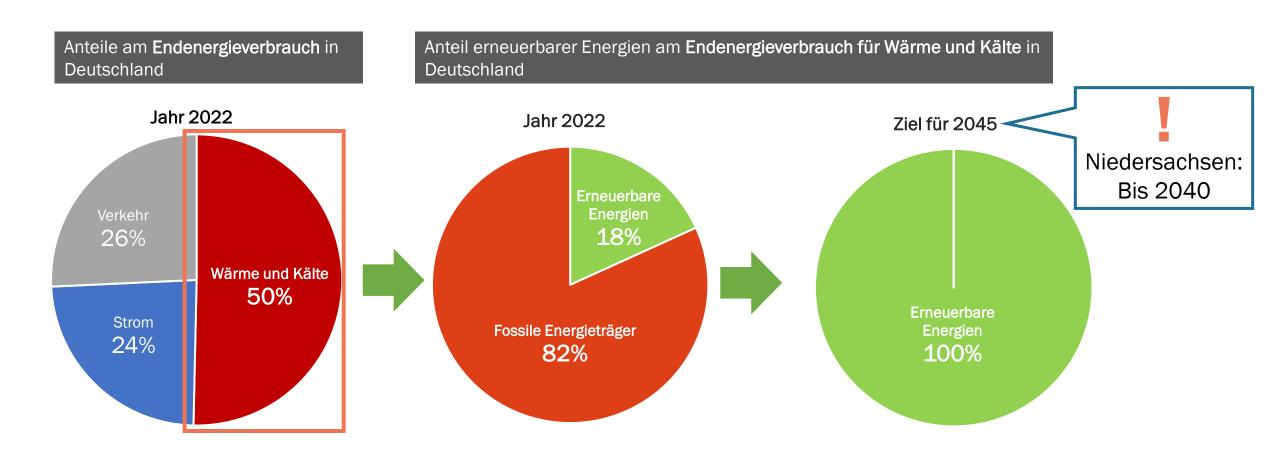
B.Sc. **Celeste-Regina Fischer**

Projektbearbeitung

Dipl. Ing. **Tobias Kade**

Ziel des Termins

- Ergebnisse vorstellen
- Hintergründe vermitteln
- > Ergebnisse und abgeleitete Untersuchungsrichtung vorstellen
- > Fragen zur Wärmeplanung beantworten/mitnehmen
- > Impulse mitnehmen


Wir können keine individuelle Energieberatung anbieten

Politische Zielvorgabe

Planungs- und Versorgungssicherheit durch regionale Angebote

Einordnung

(Unverbindlicher) Fahrplan inkl. Maßnahmenvorschläge

Fortschreibung aller 5 Jahre

Regionale Wertschöpfung: Lokale Wärmeerzeuger und -netzbetreiber, ggf. Bürgergenossenschaften

§2 Wärmeplanungsgesetz - Kommunale Wärmplanung verpflichtend

- Kommunen über 100.000 Einwohner bis 06/2026
- Kommunen unter 100.000 Einwohner bis 06/2028

Kommunale Wärmeplanung gibt grundlegendes Bild

Unternehmen

Bedarfe | Restwärme | verwertbare Abfälle

Kommunale Liegenschaften

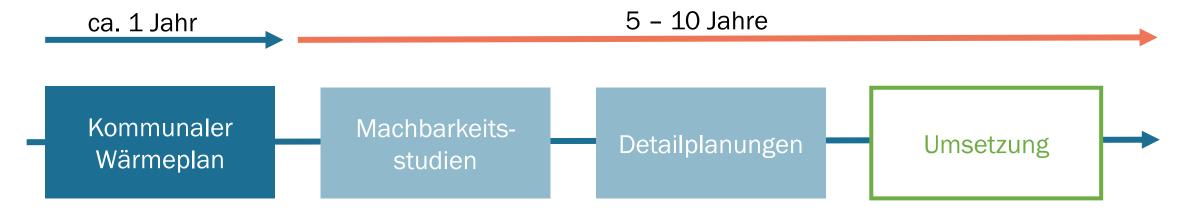
Bedarfe

Dezentrale Versorgung

Wärmepumpen sowie andere Erfüllungsoptionen des GEG, bspw. Stromdirektheizung, Solarthermie, Biomethan, Holz, Pellets, Wärmepumpenhybridheizung

Zentrale Versorgung

Erzeugungsanlagen


Erneuerbare Wärmequellen Bspw. Großwärmepumpen, Biogasanlagen, Solarthermie-Freiflächenanlagen, Tiefengeothermie-Anlage

Bedarfe | Sanierungspotenziale

Private Haushalte

Die Wärmeplanung ist nur ein erster Schritt

Strategie

- Wärmebedarfe & Potenziale
- Fokusgebiete
 Wärmenetze und dezentrale
 Versorgung
- Übergeordnete Maßnahmen

Prüfung/Planung

- ➤ Netzbetreiber & Beteiligungsmodelle
- > Technische Umsetzung
- > Ermittlung der Anschlussquoten (Interessensabfrage)
- ➤ Konkrete Kostenermittlung (Investitionen & Wärmekosten)

Wärmeplanung bereitet Machbarkeitsstudien vor

Schritte bei der Wärmeplanung

- Datenerfassung
- Analyse des Wärmebedarfs
- Wärmeversorgungsstruktur

Potenzialanalyse

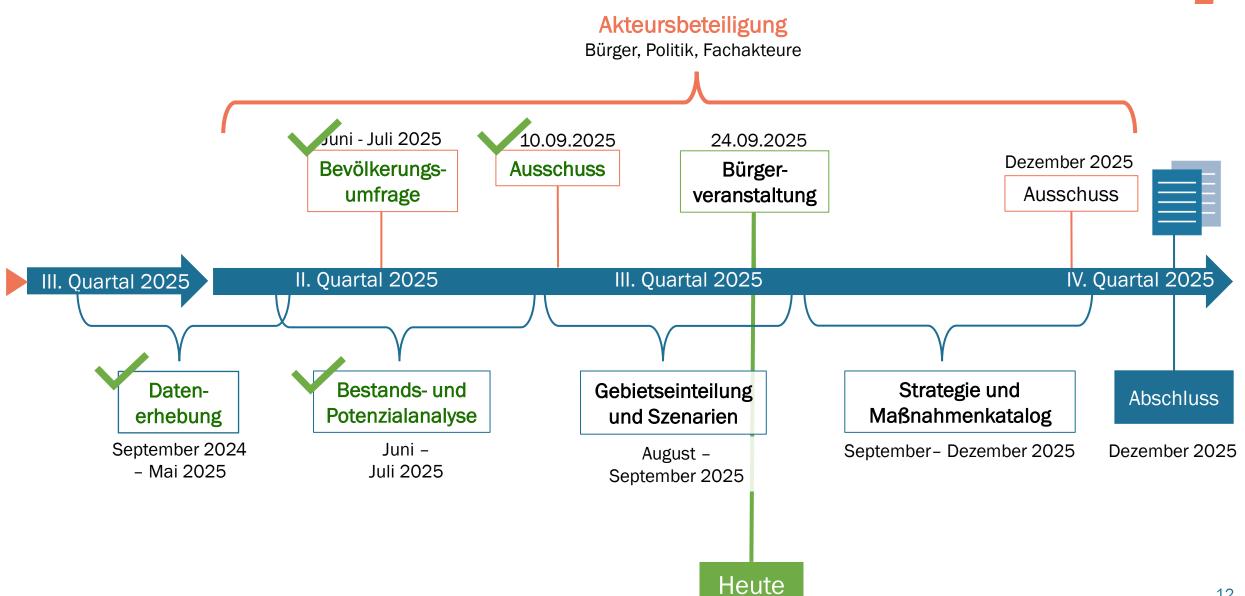
- Erneuerbare Energiequellen (Strom und Wärme)
- Sanierungspotenziale

Mögliche Quellen und Räume für erneuerbare Wärme analysieren

- Zukünftiger Wärmebedarf und dessen Versorgung
- Ausweisung von Eignungs-/Fokusgebieten

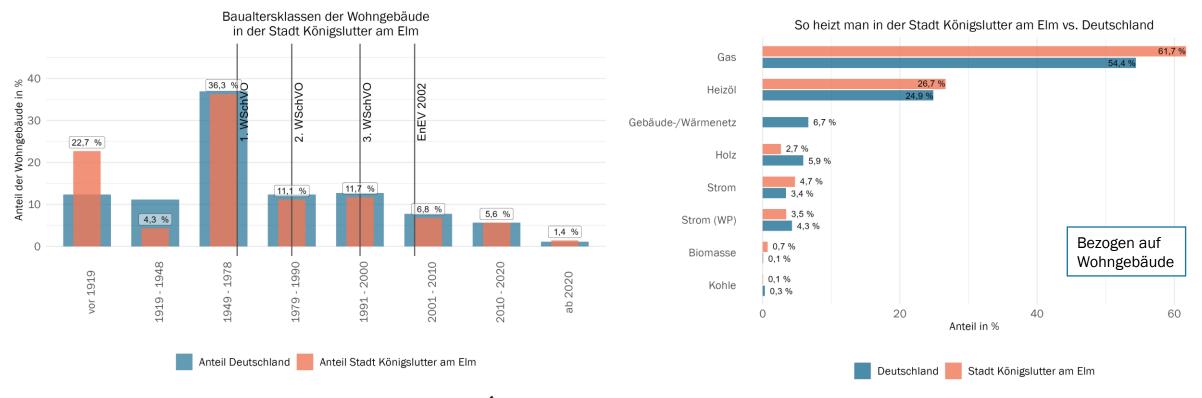
Entwicklung des Verbrauchs und Versorgung bis 2045

Wärmewendestrategie


- Gebäudesanierung
- Wärmeversorgungsansätze für einzelne Gebäude bis hin auf Stadtebene

Maßnahmen zur Erreichung der Klimaneutralität

Bestands- und Potenzialanalyse abgeschlossen



Etwa 5.992 beheizte Gebäude, Großteil Wohngebäude und Gewerbe

Etwa 63 % vor 1978 gebaut → Sanierungspotenzial vorhanden

Modernisierungen haben Einfluss auf den Wärmebedarf

Fossile Energieträger dominieren aktuelle Versorgung

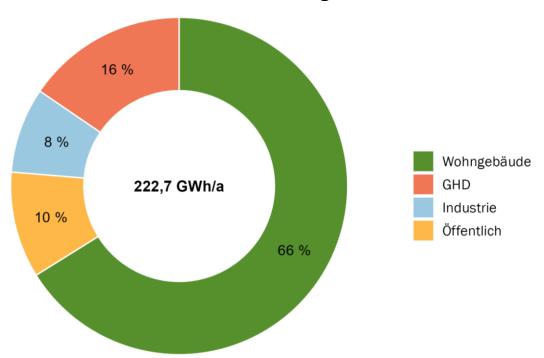
Ortschaft	Durchschnittl. Heizungsalter	Anteil Gasheizun gen	Anteil Ölheizung en	Anteil CO2
Boimstorf & Glentorf	21,3	19,7	55,7	4,0
Klein Steimke & Ochsendorf	20,2	55,9	36,3	10,7
Rhode & Uhry	19,0	41,4	48,8	9,3
Beienrode & Groß Stenum & Rennau	19,0	41,7	43,2	4,2
Riesenberg & Rotenkamp	22,3	45,1	34,0	2,7
Rottorf & Schickelsheim	18,9	75,5	18,8	3,1
Lelm & Sunstedt	21,4	22,7	57,3	5,6
Scheppau & Bornum am Elm	18,8	28,1	53,5	6,0
Lauingen & Königslutter am Elm	17,8	75,0	13,6	54,7

Altersklasse	Anteil in %
< 5 Jahre	11,0
5 - 10	20,9
11 - 15	12,0
16 - 20	12,1
21 - 25	16,5
26 - 30	12,5
> 30	15,0

44 %

- Fossile Energieträger dominieren
- Hoher Anteil an Gasheizungen
- Alter Heizungsbestand

Dekarbonisierung der Wärmeversorgung im Bestand wird große Herausforderung sein


^{*}Öl-, Gas- und Biomasseheizungen

Wohngebäude verursachen circa 52 % des Endenergieverbrauchs

Endenergieverbrauch (Wärme)

nach Sektoren in der Stadt Königslutter am Elm

Endenergieverbrauch insgesamt ca. 222,7 GWh/a

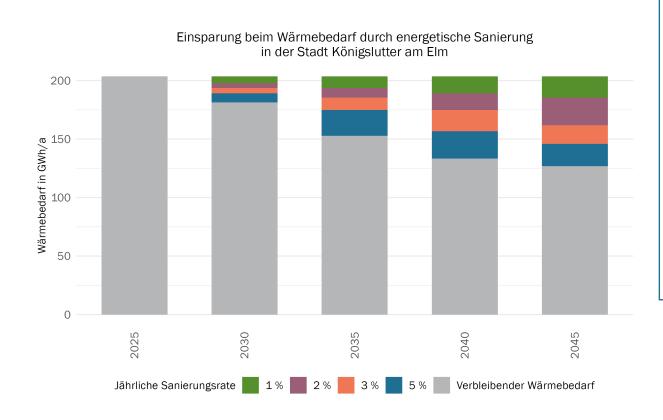
Hoher Endenergieverbrauch für Wohngebäude

Zum Vergleich:

530.000 Plätze auf Flugreisen nach Spanien

27 Mio. Saunagänge

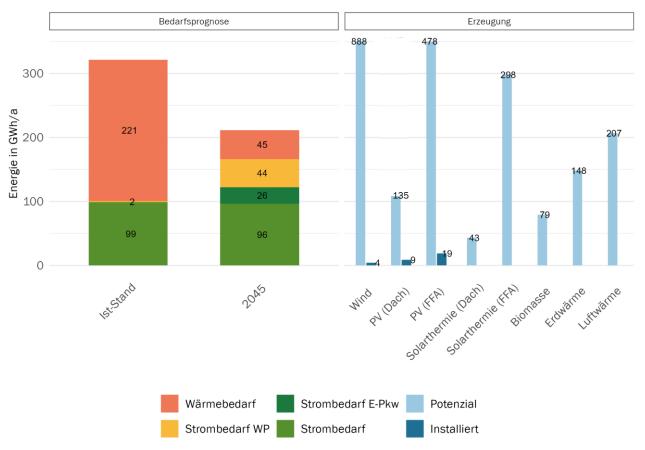
357 Mio. Kilometer mit Pkw (Benziner)


278 Mio. Bratwürste grillen

7,6 Mrd. Tassen Kaffee kochen

Energieeinsparungspotenzial durch energetische Sanierung

- Erstes Halbjahr 2024:
 - Sanierungsrate in DE bei 0,69 %
- Sanierungsrate bis 2030 bei max. 2,5 %
 - Eingeschränkte Handwerkskapazitäten
- Realistische Sanierungsrate zwischen
 1,0 2,0 %
- Einsparpotenzial (1%): 10,1 % Wärmebedarf



Hohe private und öffentliche Investitionen notwendig

Einbindung verschiedener Wärmequellen möglich

Endenergiebedarf, Potenziale und installierte Anlagen innerhalb der Stadt Königslutter am Elm

Potenziale

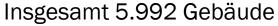
- Theoretische Menge bei Vollausbau auf möglichen Flächen
- Referenzgröße → Keine Planung

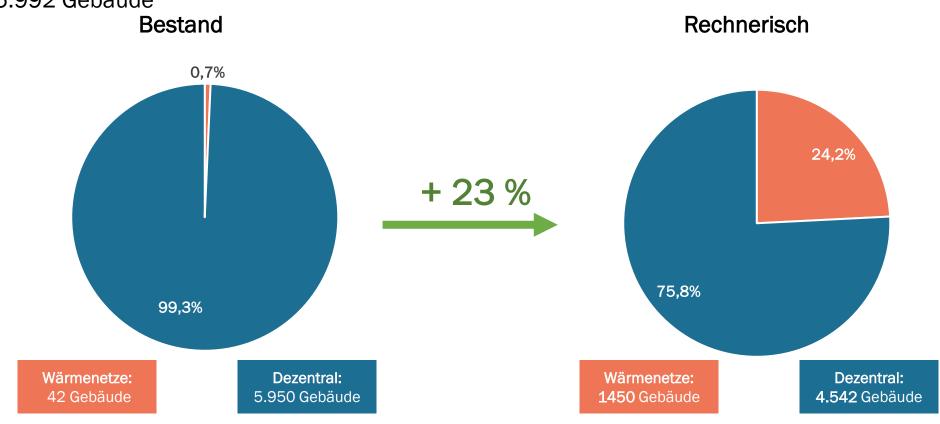
Gut nutzbare Potenziale:

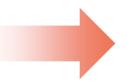
Luftwärme und Oberflächennahe Geothermie (Erdwärme)

Wenig geeignete Potenziale:

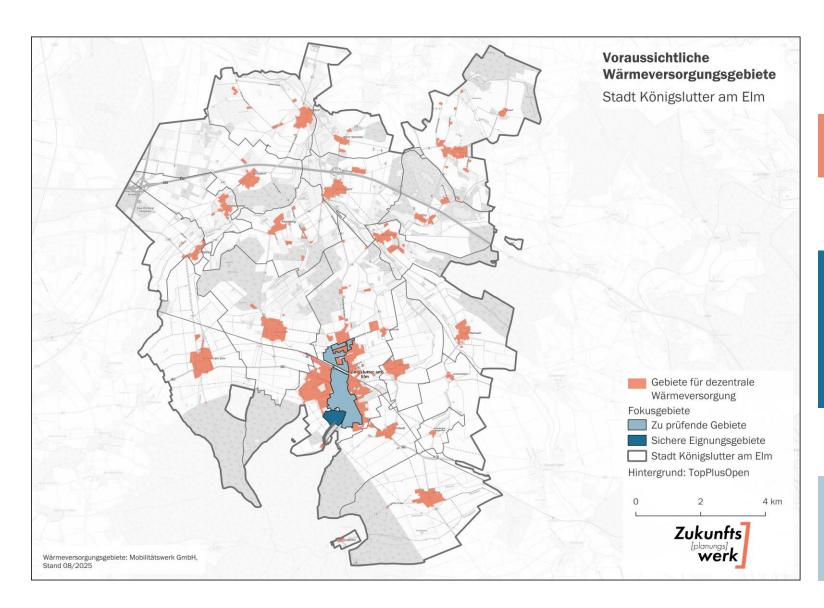
- Gewässerthermie
- Abwasserthermie


Fragerunde


5 – 10 Minuten



Rechnerisch: Steigender Wärmenetz-Anteil bis 2045 - von 0,7% auf 24,2 %



Tatsächlicher Ausbau abhängig von Verfügbarkeit von Netzbetreibern, Finanzierung, Akzeptanz und technischer Machbarkeit

Gebietszuordnung

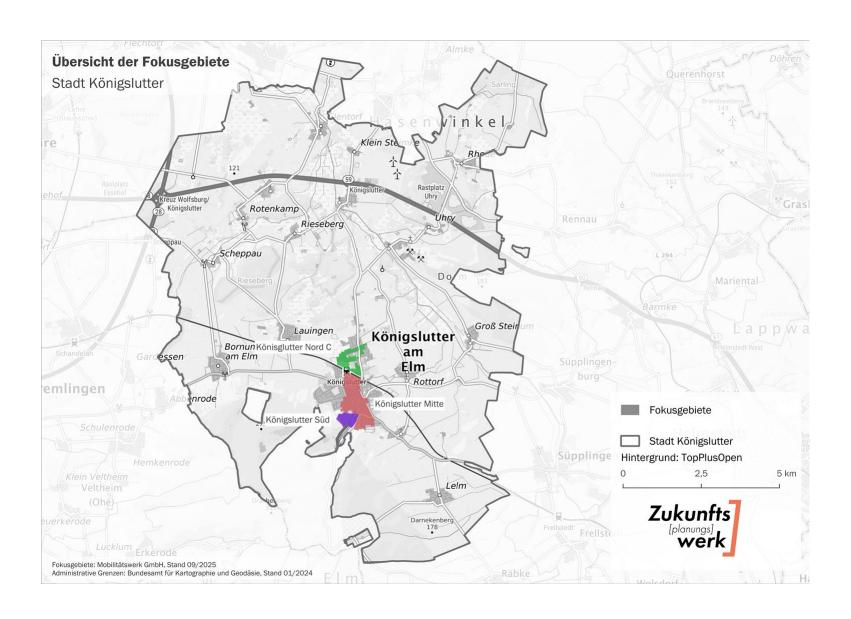
Dezentrale Versorgung:

Wärmenetz **sehr unwahrscheinlich.** Individuelle Lösung notwendig.

Sichere Eignungsgebiete:

Wärmenetz im Bestand oder konkretes Umsetzungsinteresse.

Nachverdichtung/Erweiterung der bestehenden Netze bzw. Machbarkeitsstudien als nächste Schritte.


Zu prüfende Gebiete:

Wirtschaftlichkeitsrechnung ergibt Betriebsmöglichkeit des Wärmenetzes. Konkrete Umsetzung (z.B. Netzbetreiber) offen. Weitere Gespräche werden geführt.

Detailliertere Untersuchung der Fokusgebiete für Wärmenetze

Fokusgebiete

- Königslutter Nord
- Königslutter Mitte
- Königslutter Süde

Wärmenetze - Nutzen, Kosten, Übergang

Vorteile

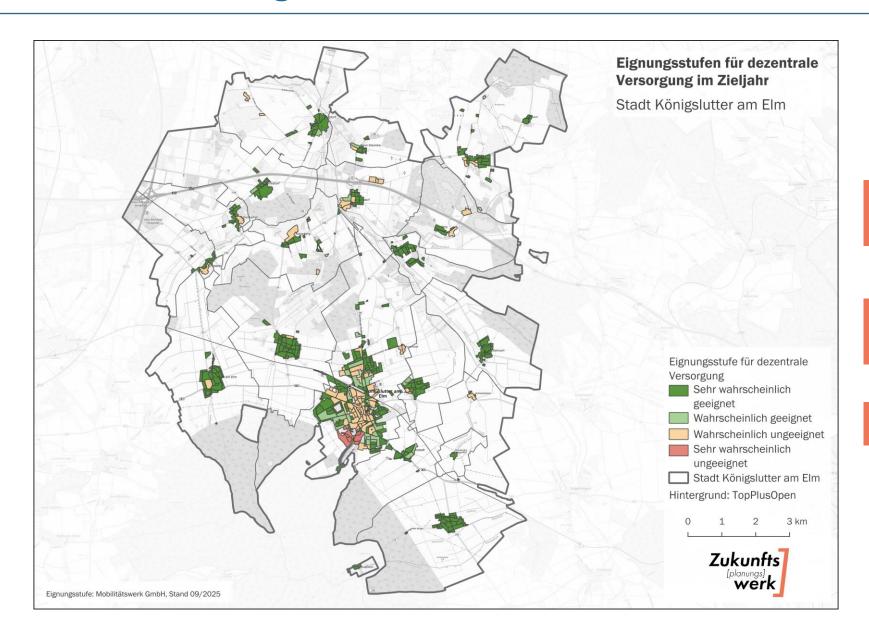
- Platzersparnis & geringer Aufwand (kaum Wartung)
- Geräuscharm & saubere Lösung: keine Emissionen (vor Ort)
- Regionale Wertschöpfung

Kosten

- Anschluss: 8.000 15.000 € (Förderung möglich)
- Wärmepreise (unterschiedlich):
 - Arbeitspreis: 8 20 ct/kWh
 - Jahresgrundpreis: 200 400 €
- Stabil bei hoher Anschlussquote | Preise abhängig von Energieträger (bspw. Biomasse, Abwärme, Strom)

Nachteile

- Abhängigkeit vom Netzbetreiber
- Hohe Anschlussquoten notwendig
- Hohe Anschlusskosten und lange Vertragsbindung (10-15 Jahre)

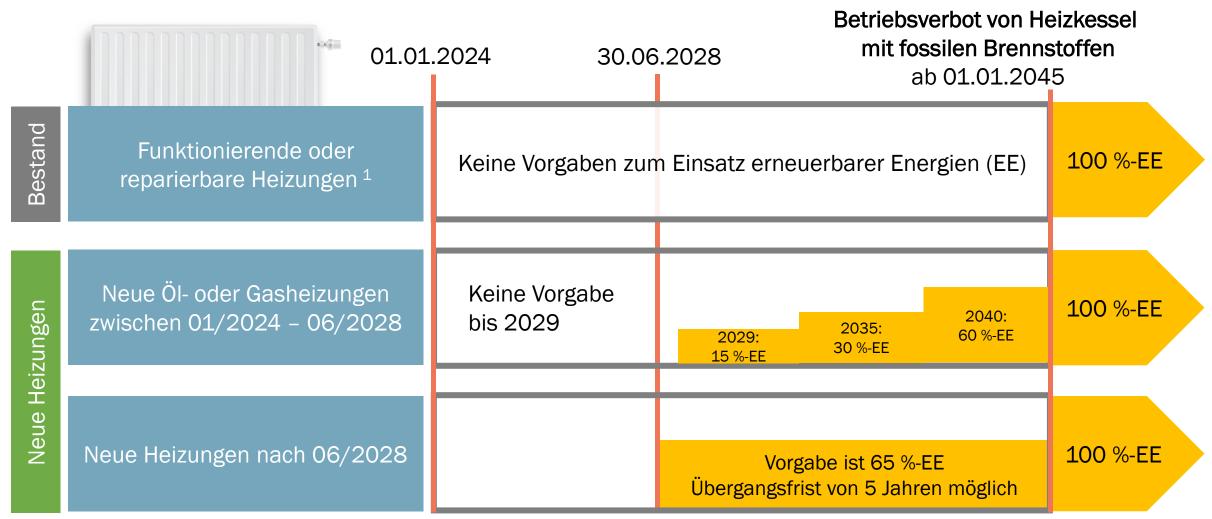

Übergang

- 1. Information & Beratung
- 2. Interesse bekunden & Vertrag abschließen
- 3. Anschluss vorbereiten
- Leitungsbau & Übergabestation
- 4. Überbrücken
- Alte Heizung/Ersatz läuft bis zur Umstellung weiter
- 5. Umstellung & Inbetriebnahme
- Wärmenetz in Betrieb, alte Heizung stilllegen

Dezentrale Lösungen für den Großteil relevant

Eigene Versorgung in den Gebieten mit geringsten Kosten

Gemeinschaftliche Lösungen weitere Option


Investition Dritter im Netz nicht absehbar

Planungssicherheit schaffen

Öl- oder Gasheizung im Bestand – Welche Vorgaben gelten?

¹Eine Austauschpflicht besteht für Heizkessel älter 30 Jahre, im Leistungsbereich zwischen 4 kW und 400 kW, bei denen es sich <u>nicht</u> um <u>Niedertemperatur-Heizkessel oder Brennwertkessel</u> handelt. Ausnahmen sind möglich (§73 GEG).

² weitere 8 Jahre bei komplexen Fällen (z. B. Etagenheizung)

Fahrplan zur eigenen Energielösung

Daten und Informationen sammeln

(Verbrauch, Rechnungen, Gebäudedaten, mögliche Maßnahmen)

Initialberatung nutzen

(Erste Einschätzung, Abgleich mit Budget, Angebote vergleichen)

(Gespräche mit Umrüstenden, Foren, Erfahrungsberichte)

Energieberater auswählen

(Qualifikation, Vertrauen, lokale Nähe)

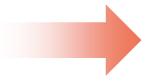
Beratung und Förderprüfung

(Konkrete Planung + Bewertung möglicher Förderungen)

Finale Entscheidung und Umsetzung

(Basierend auf Beratung, Kosten/Nutzen und Umsetzungsmöglichkeiten)

- Wärmeplanung ist keine Beratung für individuelle Versorgungslösungen
- Eigene Heizungslösung abhängig von individuellen Gegebenheiten (Gebäudestruktur, Vorlauftemperaturen, Kosten/Nutzen, etc.)
- Sanierungsmaßnahmen sollten bei Heizungsaustausch mitgedacht werden


Rahmenbedingungen beachten:

- Preisentwicklung
- Verfügbarkeit
- Effizienz/Nachhaltigkeit

Energieberatung durch EEE

www.energie-effizienz-experten.de

Energieberatung durch die Verbraucherzentrale

Kostenfreie Beratung per Videochat oder telefonisch

Beratung u.a. zu folgenden Themen:

- Neue Heiztechnik
- Wärmedämmung und Hitzeschutz
- Energiesparen (Strom, Heizenergie)
- Erneuerbare Energien
- Fördermöglichkeiten
- Gesundes Raumklima: Heizen und Lüften, Schimmel

Was kann in die Entscheidungsfindung einfließen

Energiepreisentwicklung

Laufzeit / Haltbarkeit der Anlage

Netzentgelt

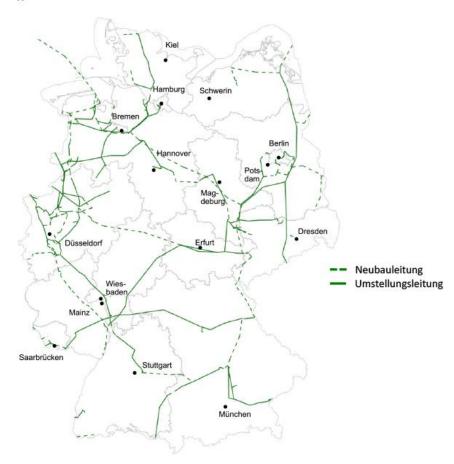
Aufwand / Nutzenvergleich

Zertifikatspreise

Verfügbarkeit

Kosten = Wartungs- +
Investitionskosten

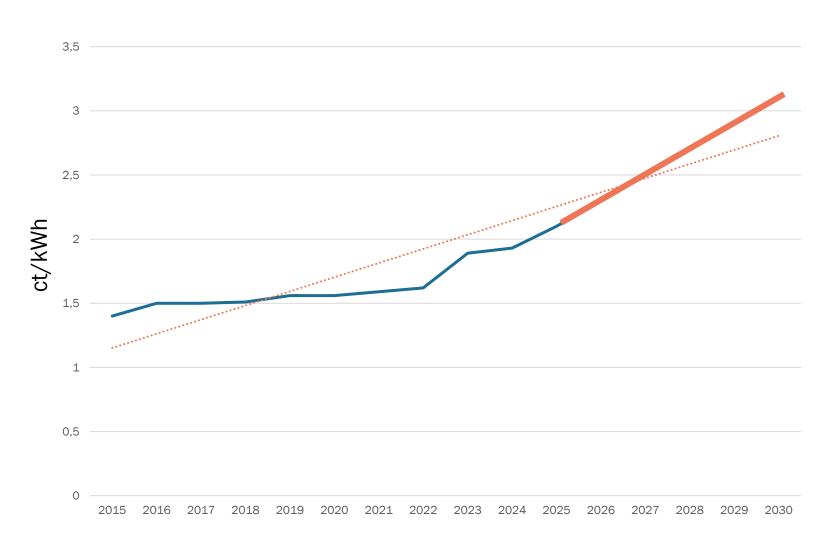
Regulatorischer Rahmen / Gesetze


Effizienz / Nachhaltigkeit / Umweltaspekte

Zukunft des Erdgasnetzes

- Netze werden bei genügend Abnahme bis 2040 / 2045 weiter betrieben
- Abschaltung wenn nicht wirtschaftlich möglich
- Wasserstoffkernnetz (Netzkosten 19 Mrd. €)
 genehmigt → Nähe des Gasnetzes
 entscheidender Faktor
- Produktion von Biogas (Biomethan) und Wasserstoff deutlich unter 10 % der aktuellen Menge an Erdgas
- Absehbar das nicht ausreichend Wasserstoff bereitstehen wird
 - aufgrund des hohen Energiebedarfs bei der Herstellung teuer

Genehmigtes Wasserstoffkernnetz



https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/Wasserstoff/Kernnetz/start.html

Weniger Gaskunden führt zu höheren Kosten

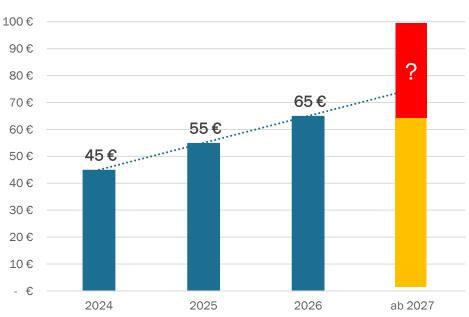
Entwicklung der Netzentgelte It. Agora EW

Netzentgelte:

- Betrieb und Wartung der Gasleitungen
- Kosten trägt der Endverbraucher

Mechanismus:

- Gasverbrauch sinkt
- Fixkosten f
 ür Netze bleiben gleich
- Weniger Kunden, höhere Kosten pro Haushalt


Perspektive:

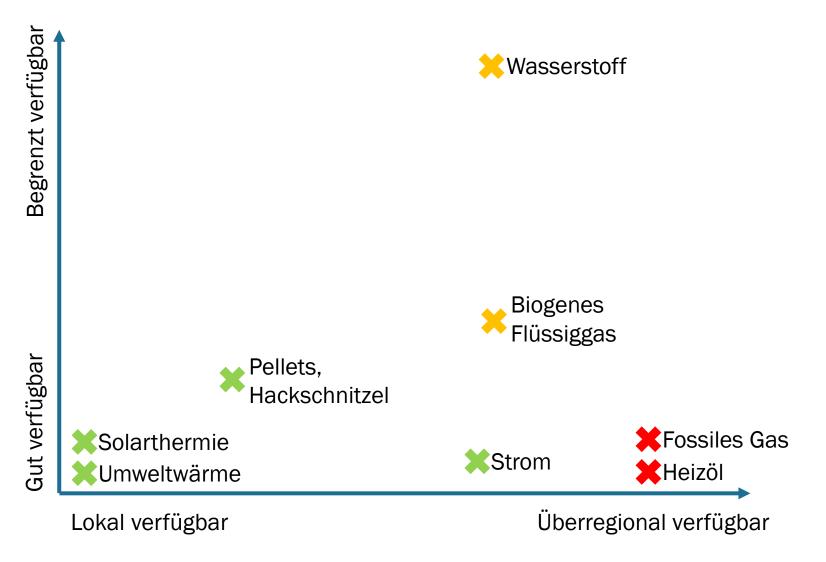
- Kurzfristig: Steigende Netzentgelte
- Langfristig: teilweise Stilllegung der Gasnetze oder Umstellung nötig
- Bundesnetzagentur versucht starke
 Preissprünge durch Regulierung
 abzufedern ("KANU 2.0")

Zertifikatspreisentwicklung – Verdoppelung erhöht Preise um 4 – 8 %

Entwicklung des CO₂-Preises

CO ₂ -Preis pro Tonne	ct/kWh (Erdgas)	Kosten (EFH, 20.000 kWh/Jahr)
45	0,9	180€
55	1,1	220€
65	1,2	240€
100	1,9	380€
275	5,5	1.100 €

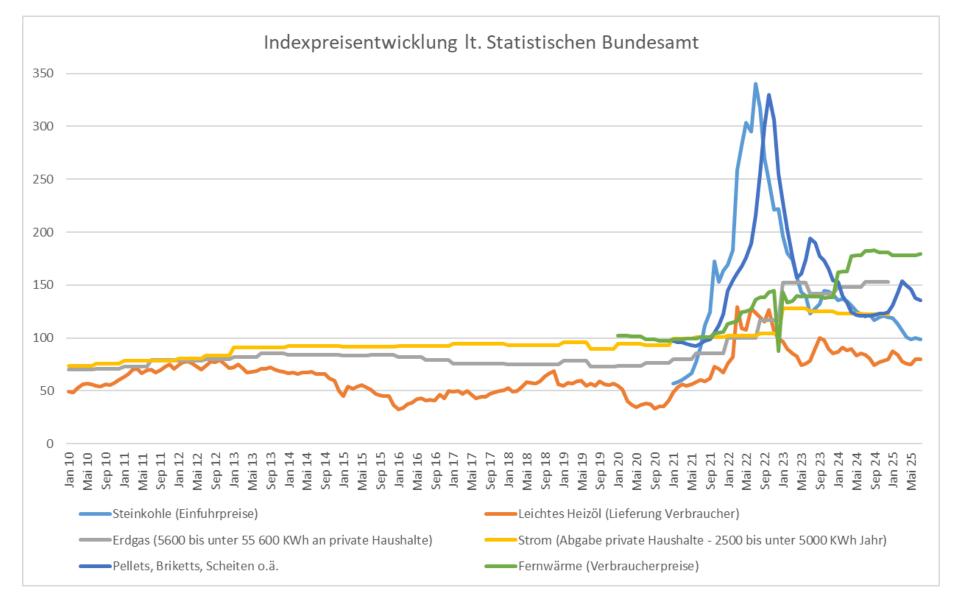
Aktuelle Anteile CO₂ Zertifikate an Preis je Einheit:


Heizöl: 12 - 16 % Anteil \rightarrow 17,52 Cent/Liter

Erdgas: 8 – 12 % Anteil → 0,998 Cent + Gasspeicherumlage*

0,299 Cent/kWh = 1,3 Cent/kWhCent

Nicht alle Energieträger stehen regional zur Verfügung



- Regionale Energiequellen werden wichtiger
- Biomasse begrenzt verfügbar
- Energieträger wie biogenes
 Flüssiggas über
 Massenbilanzierung (Zertifikate)
- Wasserstoff und andere
 Zukunftstechnologien eher für
 Industrie und spezielle
 Anwendungen

Preisentwicklung historisch

- Politische Ereignisse & Weltwirtschaft haben großen Einfluss auf Preisentwicklung
- Große Veränderungen in kurzer Zeit
- Langfristige Bindung an Technologie

Gebäudesanierung: Weniger Energie, mehr Komfort

Fassade

- Wärmedämmverbundsystem ~15 cm
- Wärmebrücken (Rollladenkästen, Heizkörpernischen, Ecken) reduzieren

Einsparung: 40 - 50 % der Heizenergie

Kosten: 200 €/m² - ca. 40.000 €

Einfamilienhaus

Ausgangssituation

Wohnfläche (m²)	150
Baujahr	1954

Umsetzung **EU-Gebäuderichtlinie** bis 2026

Ziel: -20 % der Primärenergie bis 2035

Keine Verpflichtung für Bürger

Dach/oberste Geschossdecke

- (Teil-)beheiztes Dachgeschoss: Dach abdichten/Zwischensparrendämmung
- Unbeheiztes Dachgeschoss: oberste Geschossdecke dämmen

Einsparung: 15 – 20 % der Heizenergie

Kosten: 400 €/m² - ca. 44.000 €

Kellerdecke

Bei unbeheiztem Keller

Einsparung: 5 -10 % der Heizenergie

Kosten: 100 €/m² - ca. 7.500 €

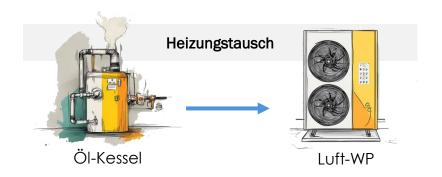
Fenster

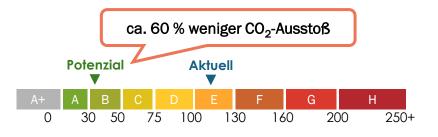
- 3-fach-Verglasung
- Zugluft / hohe Wärmeverluste durch Glas vermeiden

Einsparung: 10 - 15 % der Heizenergie

Kosten: 800 €/m² - ca. 25.000 €

Beispielrechnung – Schätzung Heizungstausch Einfamilienhaus Baujahr 1964





Ausgangssituation	
Wohnfläche (m²)	175
Anzahl Vollgeschosse	1
Brennstoff	Öl
Einbaujahr Wärmeerzeuger	1987
Wärmeübergabe	Heizkörper

Investitionskosten ¹	
Luft-Wasserwärmepumpe	25.000€
Optimierung Heizungsanlage	2.000€
Dämmung der Heizungs- und Warmwasserverteilleitungen (Pflicht gemäß GEG)	4.500€
Summe	31.500€

Förderung Investitionskosten	
Heizung: Grundförderung (30 %)	7.500€
Heizung: Effizienzbonus (5 %)	1.250€
Heizung: Klimageschwindigkeitsbonus (20 %)	5.000€
Einzelmaßnahmen (15 %)	975€
Summe	14.725€
Investitionskosten inkl. Förderung	16.775€

¹ Es können zusätzliche Kosten für einen Austausch von Heizkörpern sowie der Entsorgung der alten Heizung und Öltanks anfallen.

^{*} Annahmen für Verbrauchswerte, Kosten und Einsparungen basieren auf dem KfW-Sanierungsrechner

Viele Möglichkeiten – Eigene Optimierung

Optimierung der Strombeschaffung und Verbrauch

- Eigene PV-Anlage
- intelligenten Stromzähler (Smart Meter)
 - dynamischer Stromtarif
- Batteriespeicher
- Optimierte Nutzung (Waschmaschine, Trockner etc.)

Verbrauch reduzieren

- Gering-investive Maßnahmen
- Fensteraustausch
- Dämmung
- ..

Vielseitigkeit

- Warmwasser-Pufferspeicher mit Heizstab
- Wärmepumpe(n)
- Solarthermie
- Alte Gastherme

•

Preisvergleich

- Vergleich regionaler und überregionaler Angebote
- Einkaufsgemeinschaft mir Nachbarschaft (einzelne Rechnungen aber hohes Gesamtvolumen)

Von Nachbarschaftsunterstützung zu Gemeinschaftsnutzungen

Austausch / Nachbarschaft

 Überschüssigen Strom oder Wärme weitergeben/teilen

Energy Sharing (Energieteilung) / § 42 c EnWG

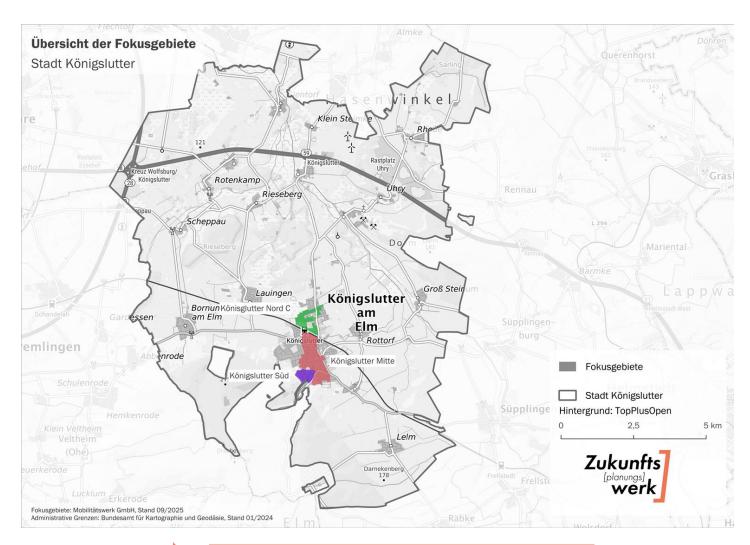
- Kleine Nachbarschaftsnetze möglich
- Teilnahme am Strommarkt
- Gemeinsame Speicher nutzen
- Regulatorisch möglich ab 2026

Wärmenetze

- Zusammenarbeit mit Netzbetreibern
- Unterstützung bei Bau und Anschluss (z. B. Arbeitseinsätze, Grundstücke)
- Möglichkeit Grundstücke zu nutzen / queren
- Gemeinsame Nutzung senkt kosten

Bürgerenergiegenossenschaft

Bürger gründen eigene Gesellschaft


Contracting (Gebäudenetze):

- Betreiber baut & finanziert die Anlage
- Mehrere Gebäude nutzen gemeinsam ein Netz
- Abrechnung wie bei Strom oder Gas

Ausblick: Finalisierung der Wärmeplanung

- Berücksichtigung Ihrer Anmerkungen
 - o Gemeinschaftliche Lösungen
 - Engagement
- Fachakteursgespräche
 - Austausch und Diskussion über Ergebnisse
- Entwicklung einer
 Strategie/Ausarbeitung von
 Maßnahmen
 - Wie könnte die Umsetzung aussehen?

Abschluss - Dezember 2025